大多数人不会处理概率陈述的不确定性;这只是因为他们没有很好地理解概率陈述。我们生活在一个精密科学的世界中,而人类的天性是相信自己无法理解那些只能简化为概率陈述的事件。在量子物理学问世之前,物理学的王國似乎是稳固的。我们有方程式用来说明我们观察到的大多数过程。这些方程式是真实的,可以证明的。它们反复出现,在事件發生之前结果就能够精确地计算出来。随着量子物理学的问世,一切突然到此为止,精密科学仅仅能够将物理现象简化为概率陈述。可以理解,这使许多人感到不安。
我并非是在支持价格运动的随机漫步观念,也不是在要求你们接受市场是随机的观念。无论如何,这不是我的目的。象量子物理学一样,市场中是否存在随机性是一種情感化的观念。到这一阶段,让我们把注意力只集中于随机过程,因为这与某種我们确信是随机的事物有关,比如掷硬币或赌场的赌博。如此,我们首先可以理解随机过程,然后可以研究其应用。随机过程是否适用于其他领域(比如市场),是一个可以稍后提出的問題。
从逻辑上来讲,有个問題必然会出现:“随机序列何时开始何时终结?”随机序列实际上没有终结。即使你离开牌桌,二十一点牌戏仍在继续。当你在赌场中从一桌换到另一桌时,我们可以说随机过程一直跟随着你。如果某天你离开了牌桌,随机过程可能会中断,但是,你一回来它就继续下去。因此,当我们谈到事件X的随机过程的长度时,我们是为了研究随机过程而主观地挑选某些有限的长度。
独立试验过程VS条件试验过程(INDEPENDENTVERSUSDEPENDENTTRIALSPROCESSES)
我们可将随机过程分为两種类型。第一種是那些一个事件到下一个事件的概率陈述固定不变的事件。我们将这些称为独立试验过程或放回抽样。掷硬币就是这種随机过程的一个例子。不管前一次抛掷的结果如何,每次抛掷的概率都是50/50。即使前5次抛硬币都出现正面,再抛一次硬币出现正面的概率并不受影响,仍然是0.5。
在另一種随机过程中,事件的概率陈述必然受到前一事件结果的影响,自然,一个事件到下一个事件的概率陈述不是固定不变的。这種类型的事件被称为条件试验过程或不放回抽样(samplingwithoutreplacement)。二十一点牌戏就是这種随机过程的一个例子。一旦出过一张牌,这副牌的组成在抽下一张牌时就与抽上一张牌时不同。假定一副新牌已经洗过并拿走一张牌,比方说,拿走的是方块A。在拿走这张牌之前,抽出一张A的概率是4/52或0.07692307692。既然已经从这副牌中抽出一张A而且不放回,那么,下一次抽出一张A的概率就是3/51或0.5882352941。
有些人认为,上面这样的条件试验过程实际上并非随机事件。尽管如此,为了我们讨论問題,我们假定它们是随机事件----因为事件的结果仍然无法预先知道。最好的做法就是把结果简化为概率陈述。设法将独立试验过程和条件试验过程之间的区别考虑为仅仅在于,根据前面的结果,一个事件到下一个事件的概率陈述是固定的(独立试验)还是可变的(条件试验)。实际上,这是它们之间唯一的区别。
任何事件都可以简化为概率陈述。从数学的观点来看,结果可以在事实之前知道的事件与随机事件的区别仅仅在于其概率陈述等于1。例如,假定从一副52张的牌中拿走51张牌,而且你知道拿走的是哪些牌。因此,你知道剩下的那张牌是什么的概率为1(确定性)。现在,我们要讨论独立试验过程,尤其是简单的抛掷硬币。
数学期望(MATHEMATICALEXPECTATION)
在这个問題上,我们需要理解数学期望的概念。数学期望有时也称为游戏者胜出(对游戏者来说期望为正)或庄家占优(对游戏者来说期望为负)。
数学期望=(1+A)*P-1
其中,P=赢的概率
A=可能赢得的金额/可能输掉的金额
因此,如果你正要抛掷一枚硬币,出现正面你会赢得2美元,但出现反面你会输掉1美元,每抛一次的数学期望为:
数学期望=(1+2)*0.5-1
=3*0.5-1
=1.5-1
=0.5
换句话说,每抛一次硬币你预期平均赢得50美分。
共13页: 上一页 [1] [2] [3] [4] [5] [6] 7 [8] [9] [10] [11] [12] [13] 下一页