在全书中,求幂运算用凸起的加字符(^)表示。例如,式10^3表示10的3次幂,或1000。根式只是分数幂。因此,1000的立方根表示为1000^(1/3),显然,该式等于10。求幂应该有一个运算符,而不只是一个幂的上角标。因此,我们的符号更加一致。当我们求一个数的根时还可以得到进一步的一致性。将加字符用作运算符,我们用与数学运算有关的方式表示求一个数的根,即一个数自乘分数次幂(实际上,当一个数大于1时,运算结果小于原数)。
但是,以这種方式表示求幂运算的主要原因在于,许多读者会想要对书中出现的很多内容进行编程。使用这種求幂格式,会使编程更快捷、更容易,而且更不容易出错。
用这種方式表示求幂运算,我们也废止了根号的使用。这样做,我们使求幂运算更加“键盘化”,并且使得用数学优先律分析公式更加容易。此外,随着计算机的同步发展,以这種方式表示求幂运算已成为一種趋势。(在这里,我并不是试图证明一種趋势,而是顺应一種业已形成且能提高我们的理解力的趋势。)
我们往往认为我们的数字和数学符号是不变的、普遍接受的。相反,它们非常容易变化。试想,十进制直到11世纪才传入欧洲,但是没有被欣然接受,因为它无法表示分数。直到1617年,小数点才被约翰.纳皮耶引入。在15世纪,符号p和m被用于表示加法和减法。对我们所看到的符号+和-的最早使用是在1481年。只是到最近几个世纪,数学符号才形成普遍接受的形式。例如,17世纪,德國数学家莱布尼茨用类似翻转过来的小写字母u的符号表示乘法。笛卡儿用看上去象小写字母o和c“背靠背”连接起来的符号表示等号。是笛卡儿偶然地引入了方根号,而我们在这里试图用^(1/2)来取代它。在用字母M表示之前,早期的罗马人用我们现在用来表示无穷大的符号来表示数字1000。1713年,伯努利开始用这个符号表示无穷大,从此,这種用法就被人们接受。
数学符号的演化大多發生在最近几个世纪。随着计算机的出现,这種演化的速度现在成倍地提高。因此,我们可以在本书中发扬传统,更用凸起的加字符表示求幂运算,因为数学符号的传统几乎不是静止不变的!
我非常好奇地发现,普遍接受的数学符号距今只有100年!我想象着我们的后代将使用某種类型的多进制体系而不是我们所用的原始单一的十进制体系。或许,他们用这样一種体系能够更好地表示无理数以及我们今天难以表达的数字概念。
许多我们想当然的惯用法将被更好的用法取代。例如,当你站在北极时,你的周围都是南方!你从北极朝任何方向迈出的第一步都是朝南的。那是因为我们的经度纬度体系用的是极坐标。极坐标试图强行使二维体系(在飞机上绘制地图)与一个三维物体(即,地球)的表面相吻合。显然,这样做是愚蠢的,无法令人满意的。我们应有更好的体系用来确切地描述三维物体表面上的各个点。
远在哥伦布发现美洲之前,除了几个傻瓜以外,每个人都知道地球是圆的。你还能怎样解释返航的船只在地平线上消失的事实?問題在于更好的体系并没有进入日常所用,这只是因为在人们尽力使用新体系之前,时间已经流逝。这也是本书尽量用这種方式表示数学运算的部分原因。我们的愿望是使运算更清晰,等式更容易用数学优先律进行分析(而且,结果是更容易从书中搬到计算机键盘上)。
假定读者至少具备起码的代数知识和基本的统计学知识(或者至少曾经具备)。这时候,值得复习的一部分内容是数学优先律。本书从头到尾会有大量的等式。很多读者不能充分理解等式,除非对所有的要点加以注释(否则,他们会觉得作者的表达不明确,使读者对等式产生歧义)。举例说明这个問題,来看:
1+2*3
某些人可能认为这个式子表示(1+2)*3,等于9。但那是不对的。正确的答案是1+(2*3)或7。
再来看等式:
-6+
上式等价于-6+49,或43。而非:
该式等于1。根据数学优先律你应知道这点,优先律规定除非加括号与此相反(括号只能用于与数学优先律相反的等式运算),你应按照以下方式进行等式运算:
1.首先运算所有的求幂(包括根号)。
2.其次运算所有的单项减法。
3.第三运算所有的乘法和除法。
4.第四运算所有的加法和减法。
5.如果存在同等优先,则从左至右进行运算。
单项减法只是表示仅有一个运算域的减号。通常,减法有2个运算域:
运算域-运算域
单项减法与此相对,仅有一个运算域:
-运算域
准确地说,单项减法表示“一个负数”。如果你不理解数学优先律,现在就学习,不然对于本书中的等式你会有麻烦。
你将在书中再三遇到“市场系统”这一术语。市场系统是指关于特定市场的特定投资理论。与关于债券的系统B或关于白银的系统A相比,关于债券的系统A是一个不同的系统。另请注意:本书正是在这方面对金字塔式加仓进行讨论。那将使問題得到简化。我们将讨论一旦进行交易就不做金字塔式加仓的系统,而“金字塔式加仓”定义为给已在进行中的交易增加更多的合约。这样简化应该有助于理解。即使不增加金字塔式加仓的内容,我们提出的概念也是复杂的。这并不是说我们完全忽视了金字塔式加仓。相反,一旦交易已在进行,期货研究员应将增加合约作为开仓系统之外的独立系统对待。这样做,我们可以对于不同的系统对苹果和苹果进行比较,也可以对于不同的系统对开仓和加仓(金字塔式)进行比较。当我们在第四章中讨论最优f时,你会学到作为你的开仓系统的给定市场系统的最优交易合约数。将开仓系统与金字塔式加仓系统分为独立的系统,你还能够确切地知道金字塔式加仓的合约数。
通常,书中提出的概念会以下注的方式表述,或者以赌博术语表述。赌博和投机之间主要的区别在于,赌博创造风险(由此,在大多数社会中,赌博在道德上被认为是错误的),而投机则是将业已存在的风险转嫁给别的投机者。关于赌博的参考资料和例子都被用来以尽可能清晰的方式说明有关的問題。通常,用赌博说明問題比用交易说明問題更容易理解,因为用赌博说明問題往往更为简洁。不过,这并不是一本关于赌博的书。
在本书中,某些句子、短语或段落用斜体字表示。这些斜体部分并非只是加重语气。当一个概念是公理或原理时,它就会用斜体表示。因此,你在阅读中要确信你总是能够完全理解斜体字的内容。
上文中无法显示的空白部分为:-6+7的平方;(-6+7)的平方。
共13页: 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] [10] [11] [12] [13] 下一页