混沌的特征:
总结混沌现象可知有如下几个基本特征:
1、 内在随机性:从确定性非线性系统的演化过程看,它们在混沌区的行为都表现出随机不确定性。然而这種不确定性不是来源于外部环境的随机因素对系统运动的影响,而是系统自发产生的。
2、 初值敏感性:对于没有内在随机性的系统,只要两个初始值足够接近从它们出发的两条轨线在整个系统溟过程中都将保持足够接近。但是对具有内在随机性的混沌系统而言,从两个非常接近的初值出发的两个轨线在经过长时间演化之后,可能变得相距“足够”远,表现出对初值的极端敏感,即所谓“失之毫厘,谬之千里”。下面的蝴蝶效应说明这一点。
3、 非规则的有序:混沌不是纯粹的无序,而是不具备周期性和其他明显对称特征的有序态。确定性的非线性系统的控制参量按一定方向不断变化,当达到某種极限状态时,就会出现混沌这種非周期运动体制。但是非周期运动不是无序运动,而是另一種类型的有序运动。混沌区的系统行为往往体现出无穷嵌套自相似结构,这種不同层次上的结构相似性是标度变换下的不变性,这種不变性体现出混沌运动的规律。
奇怪吸引子
1971年茹勒和泰肯斯提出的“奇怪吸引子”理论,并不只对湍流的研究有重要意义,而是对整个混沌理论的发展都有重要作用。一般的动力系统,最终都会趋向于某種稳定态,这種稳定态在相空间里是由点(某一状态)或点的集合(某種状态序列)来表示的。这種点或点的集合对周围的轨道似乎有種吸引作用,从附近出发的任何点都要趋近于它;系统的运动也只有到达这个点或点集上才能稳定下来并保持下去,这種点或点集就是“吸引子”。它表示着系统的稳定定态,是动力系统的最终归缩,即系统行为最终被吸引到的相空间处所。
经典力学指出,有三種类型的吸引子。一種是稳定的不动点,它代表一个稳定定态;第二種是稳定的“极限环”,即相空间中的封闭轨线,在它外边的轨线都向里卷,在它里边的轨线都向外伸,都以这个封闭曲线为其极限状态。极限环代表一種稳定的周期运动;第三类吸引子是稳定的环面,代表系统的准周期运动。
对一个动力系统来说,在长时间后系统的性态只可能是吸引子本身,其它的性态都是短暂的。所以吸引子的一个重要特征是“稳定性”,它表示着运动的最终趋向或“演化目标”,运动一旦进入吸引子,就不会再离开它;当一个小的扰动使系统暂时偏离吸引子后,它也必然会再返回来的。吸引子的另一个重要特征是“低维性”,它作为相空间的点集合,其维数必定小于相空间的维数。
上述几类吸引子,都代表规则的有序运动,所以只能用于描述经典动力系统,而不能描述混沌运动。有耗散的混沌系统的长期行为也要稳定于相空间的一个低维的点集合上,这些点集合也是一種吸引子。但是混沌之所以是混沌,就是它绝不可能最终到达规则的有序运动;因而在它的吸引子内部,运动也是极不稳定的。在这種吸引子上,系统的行为呈现典型的随机性,是活跃易变和不确定的。更为奇特的是,混沌系统的吸引子(点集合)具有极其复杂的几何图象,如果没有电子计算机这種高效工具,混沌吸引子是无法绘制出来的。所以茹勒和泰肯斯把它们称为“奇怪吸引子”,以区别于前述那几種“平庸吸引子”。奇怪吸引子既具有稳定性和低维性的特点,同时还具有一个突出的新特点,即非周期性——它永遠不会自相重复,永遠不会自交或相交。因此,奇怪吸引子的轨线将会在有限区域内具有无限长的长度。
洛仑兹所给出的那个绕两叶回转的永不重复的轨线,就是一个奇怪吸引子——“洛仑兹吸引子”。它是在三维空间里的一类双螺旋线;系统的轨道在其中的一叶上由外向内绕到中心附近,然后突然跳到另一叶的外缘由外向内绕行;然后又突然跳回原来的那一叶上。但每一叶都不是一个单层的曲面,而是有多层结构。从中取出任意小的一个部分,从更精细的尺度上看,又是多层的曲面。所以这種螺旋线真是高深莫测、复杂异常。它永遠被限制在有限的空间内,却又永不交结,永无止境。1976年,德國的若斯勒考察了一个更为简化的洛仑兹方程
dx/dt=-(y+z)
dy/dt=x+ay
dz/dt=b+xz-cz
这个方程组的特点是只有最后一个方程中含有非线性项xz。若斯勒由这个方程组得出了一个洛仑兹吸引子的变種若斯勒吸引子。
它也是由很多层次构成的复杂几何图象。与洛仑兹吸引子不同,若斯勒吸引子只有一片。它似乎是这样形成的:当z较小时,系统的轨道在(x,y)平面或平行于它的平面内向外旋;当x足够大时,z开始起作用,轨道在z轴方向拉长;当z变大后,dx/dt则变小,轨道又被拉回到x较小处。三个变量的交互作用,产生了轨线的复杂运动。
除此之外,混沌学家们还得到了一些其它的奇怪吸引子。可以断言,充分认识奇怪吸引子的作用,对许多問題的探索,都会有巨大的作用。不过,奇怪吸引子的数学理论是困难的,目前还处于起始的阶段。正像茹勒所说:“这些曲线的花样,这些点子的影斑,往往使人联想到五彩缤纷的烟火,或宽阔无垠的银河;也往往使人联想到奇怪的、令人烦躁不安的植物繁殖。一个崭新的领域展现在我们面前,其结构需要我们去探索,其协调(和谐)需要我们去发现。”